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Abstract: 
The recent fusion between cognitive robotics and 
the Internet of Things is transforming precision 
farming. However, present-day systems lack 
adaptability to dynamic terrains because they 
employ static modelling with rule-based logic that 
dissipates under real-time environmental 
fluctuating occurrences. This work introduces an 
Internet of Things-driven precision farming system 
that employs Edge AI, fuzzy logic, and kriging-

based adaptive soil mapping on a hybrid hexagonal 
grid. It generates actionable insights for 
autonomous irrigation, tillage, and sowing by 
correlating real-time soil parameters of moisture, 
pH, elevation, and weather factors. According to 
numerical statistics, irrigation efficiency has 
increased by 93.6%, and soil moisture forecast 
accuracy has increased by 89.2%. This proposed 
approach demonstrates a scalable deployment of 
autonomous farming robots with terrain-aware 
decision-making abilities. It promotes sustainable 
agriculture by improving productivity, minimizing 
wastage of resources, and facilitating intelligent 
field management in real farming scenarios. 
Keywords: IoT-based Precision Farming, Adaptive 
Soil Mapping, Kriging Interpolation, Edge AI, 
Fuzzy Logic Control, Hexagonal Grid, Smart 
Agriculture, Autonomous Farming Robots, Terrain-

Aware Decision Making, Real-Time Soil 
Monitoring 

1. Introduction: 
Drones and other types of robotics and Internet of 
Things (IoT)-based procedures are enabling 
modern farming to transform towards automation 
and sophisticated decision-making in real time[1]. 
Constant tracking and monitoring of the soil and 
environmental conditions are enabled by the IoT 
with a smart sensor network, further relaying real-
time information for analysis[2]. Such a data-

driven approach allows field operations to improve 
their situation awareness and accuracy[3]. Robotics 
serve to further enhance the process by allowing 
feedback from sensors to adapt operations 
including tillage, sowing, and irrigation[4]. 
Robotics and Internet of Things together form the 
backbone of smart farming systems to enhance 
farm productivity, minimize wastage of resources, 
and maximize efficiency[5]. In our study, this 
synergy permits an architecture for end-to-end 
empowerment ranging from data collection and 
preprocessing through adaptive mapping and 
autonomous actuation, thereby enabling the farm to 
respond in real-time[6]. Sustainable decision-

making along with energy-efficient AI edge 
computing systems, support the whole cycle of 
smart agricultural infrastructure[7]. This constitutes 
a leap on the pathway towards completely 
autonomous and efficient agricultural 
ecosystems[8]. 
Modern agriculture is rapidly changing, 
incorporating intelligent systems and autonomous 
technologies for precision field-watching[9]. For 
any intervention and optimization of production to 
work, ever-real-time monitoring of soil, crop, and 
weed distribution is thus imperative[10]. UAVs, 
unmanned aerial vehicles, stand out as wonderful 
assets for high-resolution aerial monitoring without 
soil compaction[11]. Able to cover vast areas in a 
very short time, drones, unlike ground vehicles, 
provide more detailed information on crop health 
and the status of fields[12]. From autonomous 
tractors to smart agricultural instruments, modern 
agriculture is turning upside down for plowing, 
seeding, pest spraying, and harvesting, which are 
loaded with high-end sensors, satellite navigation, 
and computer vision[13]. This calls for advanced 
sensing, decision-making, and motion-planning 
methods to allow robots to perform well in the 
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highly complex agricultural environ[14]. We 
present a drone-based integrated system for real-
time soil and crop assessment that synergizes aerial 
images and ground sensor data, enhancing the 
precision of soil health evaluation while enforcing 
high efficiency and sustainability in farming 
practices[15]. 
Inability to deal with unstructured surroundings, 
late decisions, and quite roughly made judgments 
about soil and crops are some of the many flaws 
that plague the current imaging systems for smart 
farming today[16]. Most of them are dependent on 
vehicles on the ground, which end up compacting 
soil, or worse on satellite imaging, which does not 
always have the right resolution required for real-
time field-based decisions[17]. Moreover, 
conventional systems cannot adapt dynamically to 
change conditions and cannot assimilate data from 
a number of different sources efficiently[18]. 
Combining IoT sensor networks, edge artificial 
intelligence computation, and UAV-based aerial 
photography, our study overcomes these barriers. 
This therefore enables autonomous actuation, 
adaptive mapping, and real-time processing without 
outside computation. This system is faster, more 
accurate, and sustainable when compared to the 
conventional method of smart farming in that it 
provides high-resolution monitoring, precise 
intervention, and energy-efficient operations. 

1.1. Problem Statement: 
Modern agriculture majorly concerns itself with 
optimizing resource usage and maintaining soil 
health in an environment that is constantly 
changing[19]. The very nature of traditional 
agricultural practices provides little or no response 
to environmental conditions in terms of irrigation; 
thereby, causing extremely inefficient irrigation, 
low crop yield, and soil degradation[20]. In 
addressing these concerns, this research integrates 
real-time sensor[21] networks, edge AI, adaptive 
soil mapping, and autonomous farming robots in an 
intelligent precision agriculture framework 
supported by the Internet of Things[22]. The 
approach utilizes hybrid data processing, spatial 
interpolation, and fuzzy logic-based decision-

making in the irrigation process, aware of terrain 
tillage, and efficient planting[23],. Built on 
continuous learning, interactivity prescribes the 
proposed scheme for more[24] profitable 
production with resource conservation while 
ensuring sustainability in agricultural practices. 
[25] 

1.2. Objective 

• Implement an IoT-based system to 
monitor environmental and soil 
parameters in real-time on the field. [26] 

• Analyze terrain-specific data using Fuzzy 
Logic, Edge AI, and Kriging for adaptive 
soil mapping [27] 

• Deploy smart farming robots to optimize 
seeding, tillage, and irrigation for 
sustainable agriculture[28]. 

2. Literature Review: 
 IoT with service robots in a smart home[29]. They 
indicate it is difficult for existing learning 
algorithms to work with dynamic data settings[30]. 
VIPLE-an open architectural approach to event-
driven and service-oriented computing so as to 
integrate robots and IoT in a seamless manner [31]. 
the need for advanced materials and manufacturing 
processes for smart factories to enable IoT, CPS, 
and human-robot interaction made efforts to 
maximize output through smart material 
management context-aware cloud robotics CACR, 
[32]. mentioned gesture-based robotic control for 
weed-cutting and other agricultural activities, 
indicating the use of MEMS sensors[33]. 
IoT and big-data interactive logistical delivery 
scheduling system utilizing graph-based shortest 
route algorithms for effective path optimization 
demonstrated inexpensive, flexible temperature 
sensors produced by nanomaterials [34] such as r-
GO and CNTs, where r-GO performed better in the 
balance between sensitivity and repeatability. By a 
thorough review, investigated the significance of 
IoT to Industry 4.0; it made transformation 
possible. A wireless sensor network-based 
navigation system for tiny flying robots [35]. This 
allows for lightweight obstacle avoidance for 
indoor spaces. A Web-centric Internet-of-Things 
architecture with medical sensors to real humanoid 
robots for diabetes control[36]. 
The migration of endpoints into the cloud as an 
enhanced means of offering seamless and scalable 
resources[37] Along with that user-adaptive 
moisture, variations interaction with smart 
environments through a platform of integrated IoT 
and BCI-V, so one could imagine manipulating the 
environment straight through thought[38]. An 
important part of integration was represented in 
research by describing the emergence of Industry 
4.0 and IIoT-an integration of sensors, robotics, and 
enterprise processes. presented a pest monitoring 
system for real-time species-specific advice in crop 
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protection using sensors[39]. Using an onboard and 
environmental sensor approach, developed 
nonlinear bounded-error estimation methods under 
IoT localization[40]. 
The noisy nature of EEG signals interferes with any 
kind of precise intent classification,[41] they also 
presented a certain amount of promise [42] with 
IoT-fused BCIs for controlling smart appliances 
[43] argued for the integration of real-time 
environmental [44] and geolocation data with BIM 
for enhanced facility and construction [45] 
management. In order to emphasize the latency 
issues intrinsic to cloud robotics [46] Drone Track, 
a drone system integrated with the cloud with the 
ability to carry out real-time object tracking via the 
IoT [47]. To accommodate adaptability of the 
system,[48] the need of embedding intelligence 
into manufacturing components [49]. To satisfy the 
requirement of dynamic reconfiguration for 
customized healthcare needs, IoT-based smart 
rehabilitation systems [50]. 
 

3. Proposed Methodology: 
An intelligent soil monitoring system of low-cost 
ambient electronics combines autonomous robotic 
actuation, AI-based- decision making with real time 
sensor networks for precision farming.  The IoT 
sensor collects information concerning the weather, 
elevation, pH, and soil moisture and then 
preprocesses it using Edge AI with Z-score outlier 
identification and exponential-weighted moving 
average smoothing, Knowns as hybrid hexagonal 
grid mapping with Kriging interpolation is utilized 
for precise estimation of soil properties and 
dynamic modification of the terrain.   

 

Figure 1: IoT-Based Adaptive Soil Monitoring with 
Kriging Estimation 

The fuzzy logic inference system (FLIS) at the 
edge makes real-time decisions regarding the 
sowing, tillage, and irrigation of the crops 
depending on soil condition.  Autonomous farming 
robots are guided by Theta path recalculation* for 
terrain-aware operations.  Finally, over time, 
adaptive decision-making continues refining soil 
forecasting through continuous cloud-based 
learning with Swarm Optimization (ACO). 
 

3.1. Data Collection: 
An IoT sensor network may be envisaged wherein 
sensors would record very important parameters of 
soil and the ambience for adaptive real-time on-soil 
monitoring, to carry a volumetric water content, 
which soil moisture sensors would respectively 
measure, and which are expressed as:  
 𝑆𝑀(𝑖, 𝑗, 𝑠) = 𝑃𝑞𝑃𝑠 × 100 

(1) 

Where 𝑃𝑠 represents total volume of soil at 
coordinates (𝑖, 𝑗) and time 𝑠, 𝑃𝑞  will represent the 
volume of water; whereas LIDAR and ultrasonic 
sensors measure terrain elevation 𝐸(𝑖, 𝑗, 𝑠) for 
topographical mapping, pH and EC sensors give 
soil nutrient levels.  Weather sensors measure 
temperature, humidity, and rainfall 𝑊(𝑖, 𝑗, 𝑠) to 
model microclimates' effects on soil moisture 
dynamics continuously.  Data transmission was 
successfully executed over LoRaWAN, 5G, and 
MQTT for latency reduction. Pre-processing data 
through Edge IoT nodes in precision agriculture, by 
noise filtering and outlier detection, enhances 
Kriging-Based Spatial Estimation and Hybrid 
Hexagonal Grid Mapping Data Quality. 

3.2. Data Preprocessing: 
Edge AI and Fog Computing generate cleaner data, 
thus assuring high accuracy for soil and 
environmental detection with respect to data 
preprocessing. To reduce noise in the sensor data, 
the Exponentially Weighted Moving Average 
(EWMA)-an average that dampens changes in 
sensor data-is used: 
 𝑇𝑠 = 𝛼𝐴𝑠 + (1 − 𝛼)𝑇𝑠−1 (2) 
Where 𝐴𝑠 is the current sensor reading, 𝑇𝑠 is the 
smoothed value, 𝛼 is the smoothing factor. Soil 
moisture 𝑆𝑀(𝑎, 𝑏, 𝑠), elevation 𝐸(𝑎, 𝑏, 𝑠), and the 
weather parameters 𝑊(𝑎, 𝑏, 𝑠) are fused together 
into one soil health map. Outliers are detected 
using Z-score analysis, defined as follows: 
 𝐶 = 𝐴 − 𝜇𝜎  

(3) 

Where 𝐴 is the sensor reading, 𝜇 is the mean, and σ 
is the standard deviation. The results of edge 
preprocessing increase precision in Kriging-Based 
Spatial Estimation and Hybrid Hexagonal Grid 
Mapping in the realm of precision agriculture. 

3.3. Adaptive Soil Mapping (Hybrid 
Hexagonal Grid with Kriging-

Based Spatial Estimation): 
The Hybrid Hexagonal Grid (H-Grid) model is a 
better platform for soil moisture mapping and 
terrain adjustments. In each hexagon cell, at 
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𝐻(𝑥, 𝑦), weather data 𝑊(𝑥, 𝑦), elevation 𝐻(𝑥, 𝑦), 
soil pH 𝑝𝐻(𝑥, 𝑦), and soil moisture 𝐻(𝑥, 𝑦) (𝑥, 𝑦, 𝑆𝑀(𝑥, 𝑦)). Kriging Interpolation is concerned with 
the unsampled areas estimation of spatial soil 
properties in minimizing uncertainty by  
 𝐶∗(𝑖) = ∑  𝐴

𝑥=1 𝜆𝑥𝐶(𝑖𝑥) 

(4) 

where 𝐶(𝑖𝑥) is the known sample point, with 𝜆𝑥 
weights applied in the Kriging system with their 
respective calculations, and 𝐶∗(𝑖) will be the 
predicted soil attribute at site 𝑖. Slope-Aware 
Analysis 𝑆(𝑖, 𝑗) which combines LIDAR with Ant 
Colony Optimization (ACO) towards optimizing 
tillage depth while reducing erosion risks, rainfall 
impact mapping 𝑅(𝑖, 𝑗, 𝑠) prevents over-irrigation. 
It makes precision agriculture better by aiming at 
the mortal combination of the best practices in soil 
conservation, fertilization, and irrigation. 

3.4. Decision Making: 
The Edge AI-enhanced Fuzzy Logic Inference 
System manages and controls all the variables 
related to irrigation, tillage, and seed. As these 
conditions fluctuate, the farm practices adjust 
accordingly; for instance, the Flesh Moisture Status 
(𝑆𝑀(𝑖, 𝑗), Terrain Elevation) (𝑬(𝑖, 𝑗) and Crop 
Requirements are among the fuzzy input variables. 
These 𝐶𝑅(𝑖, 𝑗) are the fuzzy input variables among 
which the membership functions are defined: 
 𝜇𝑆𝑀Dry(𝑖) = 30 − 𝑆𝑀(𝑖, 𝑗)30 , 𝜇𝑆𝑀Wet(𝑖)= 𝑆𝑀(𝑖, 𝑗) − 3070  

(5) 

where SM indicates the actual degree of soil 
moisture in "Dry" or "Wet" classification. Decision 
making will follow the rule-based adaptive control 
feature, which comprehends: 
IF 𝑆𝑀(𝑖, 𝑗) < 30% AND 𝑇(𝑖, 𝑗) > 
35∘C, THEN increase irrigation.  
IF 𝑬(𝑖, 𝑗) > 
15∘ AND high soil erosion detected, THEN modify
 tillage depth 

Precision farming is provided with this FLIS-

activated real-time decision making; hence, less 
wasteful use of water, more crop yield, and 
preventing soil degradation. 

3.5. Autonomous Actuation: 
Smart agricultural robots use IoT-based 
autonomous actuation mechanisms and Edge AI to 
provide real-time automatic autonomous actions for 
farmlands on the terrain. Automatic drip or 
sprinkler systems perform irrigation according to 
moisture thresholds of the soil, 𝑆𝑀(𝑖, 𝑗)<30%. 

Using dynamic control to adjust seeding depth, the 
following is true: 
 𝐹𝑡(𝑖, 𝑗) = 𝑑(𝑆𝑀(𝑖, 𝑗), 𝐸(𝑖, 𝑗)) (6) 
Where the ideal seeding depth 𝐹𝑡(𝑖, 𝑗) that depends 
on the elevation of terrain 𝐸(𝑖, 𝑗) and soil moisture 𝑆𝑀(𝑖, 𝑗). Variable depth tillage is described for 
tillage optimization as: 
 𝐹𝑠(𝑖, 𝑗) = 𝐹𝑚𝑎𝑥 − 𝐿 ⋅ 𝑆𝑀(𝑖, 𝑗) (7) 
Where 𝐹 max is the maximum depth,  𝐿 adaptive 
factor and 𝐹𝑠(𝑖, 𝑗) is tillage depth. Self-correcting 
path planning makes use of Theta Algorithm * by 
continually recalculating the best routes according 
to terrain constraints: 
 𝑍new (𝑎) = 𝑚𝑖𝑛(𝑍prev (𝑎) + ℎ(𝑎)) (8) 
Where ℎ(𝑎) is the dynamic terrain penalty and 𝑍new (𝑎) is the updated path cost. This adaptive 
robotic architecture provides precision agriculture 
through optimized path planning, tillage, irrigation, 
and sowing. 

4. Result and Discussions: 
Soil Moisture Deviation (SMD) metrics were 
employed for verifying the high-accuracy soil 
moisture prediction of the proposed IoT-driven 
adaptive soil monitoring system with an average 
deviation lower than 5 percent.  Adaptation of real-
time Kriging-based terrain estimation resulted in 28 
percent reduction in water wastage and efficient 
irrigation (IE).  Theta-based self-correcting path 
planning* helped improve robot navigation in 
rough terrains, reducing traversal mistakes by 35 
percent.  Increase in crop growth rate (CGR) was 
daily by 12 percent due to better tillage and sowing 
depth applications powered by Edge AI and fuzzy 
logic-schemed decision making.  To further boost 
the efficiency of irrigation and tillage models for 
future sustainable increases in productivity, cloud-

based learning was tied in with Swarm 
Optimization Techniques (ACO). 

 

Figure 2: Performance of Adaptive Soil Mapping 
Using Kriging and Terrain Analysis 

Adaptive soil mapping system performance metrics 
with terrain-based analysis and Kriging-based 
spatial estimation are shown in this fig. 2. The line 
of Moisture Prediction Accuracy demonstrates high 
consistency, which will prove that reliable 
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interpolation occurs in areas experienced with 
missing data. The Rainfall Impact Score varies by 
zone which demonstrates differential effects of 
dynamic rainfall on soil conditions. The Slope-

awareness effectiveness remains sound, 
representing the system's adaptation of tillage depth 
and erosion control due to terrain analysis. In sum, 
it indicates how effective the combination of spatial 
interpolation and environmental data at precision 
agriculture. 

 

Figure 3: Comparative Analysis of Smart Farming 
KPIs 

The fig. 3 shows the mean values for four key 
performance measures under consideration in the 
smart farming assessment. These are Crop Growth 
Rate (CGR), Energy Consumption (EC), Irrigation 
Efficiency (IE), and Soil Moisture Deviation 
(SMD). The results show that the method achieves 
good irrigation efficiency to curb water wastage 
and low moisture deviation indicating accurate soil 
forecasting. Beyond Crop Growth Rates, the 
efficiency of Adaptive Soil Mapping and Decision 
Assistance Modules can be corroborated. Moderate 
energy consumption, however, is a testament to the 
good working of the IoT devices, thus enabling 
sustainability in the precision farming process. 

Table 1: Zone-Wise Analysis of Soil Mapping 
Metrics 

Zone 

Moisture 

Prediction 

Accuracy 

(%) 

Rainfall 

Impact 

Score 

Slope-

Awareness 

Effectiveness 

(%) 

1 88.41 11.24 75.25 

2 88.39 18.15 72.45 

3 93.59 10.45 71.58 

4 88.54 24.88 86.77 

5 90.49 19.46 84.43 

This table 1 shows zone-wise performance metrics 
for the adaptive soil mapping system. One of the 
system components is Kriging interpolation to 
compute moisture in areas where no direct sensor 
inputs are available.  Rainfall impact score 
indicates how different zones are modified on their 
irrigation requirements by the rainfall factor.  

Slope-awareness effectiveness indicates how the 
system adjusts for tillage operations based on data 
of slope and terrain elevation.  Together, these 
metrics demonstrate this system's ability to provide 
accurate real-time soil and terrain maps used in 
smart farming applications. 

5. Conclusion 

The proposed IoT-driven adaptive soil monitoring 
system would exploit autonomous robotic 
actuation, AI-based decision making, and real-time 
sensing for precision agriculture. The Hybrid 
Hexagonal Grid Mapping with Kriging 
Interpolation provided very accurate estimates of 
soil properties; thus, efficient modifications to 
irrigation, tillage, and planting were performed. 
The path-planning method of Theta enhances robot 
navigation in rough terrains, whereas edge AI fuzzy 
logic control enhances real-time decision-making. 
Experimental results have shown an increase in 
crop growth rates, decrease in the variation in soil 
moisture, and increase in irrigation efficiency. 
Future work will focus on improving autonomous 
farming operations and the fine-tuning of 
prediction models through ACO integration with 
cloud-based learned mechanisms. 
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